https://brown-csci1l660.github.io

CS1660: Intro to Computer Systems Security
Spring 2026

Lecture 6: Integrity Il

Instructor: Nikos Triandopoulos
February 10, 2026

A7
N

0

BROWN

https://brown-csci1660.github.io/
https://brown-csci1660.github.io/
https://brown-csci1660.github.io/

CS1660: Announcements

¢ Course updates
¢ Project 1 “Cryptography” is due next Thursday

¢ HW 1 is going out tomorrow

L ast class

¢ Cryptography

o Symmetric-key encryption in practice
¢ Computational security, pseudo-randomness

e Stream & block ciphers, modes of operations for encryption, DES & AES
o Introduction to modern cryptography

o Integrity & reliable communication

¢ Message authentication codes (MACs)

Today

¢ Cryptography

¢ Symmetric-key encryption in practice
¢ Computational security, pseudo-randomness

o Stream & block ciphers, modes of operations for encryption, DES & AES
o Introduction to modern cryptography

¢ Integrity & reliable communication
¢ Message authentication codes (MACs)

¢ Authenticated encryption

¢ Cryptographic hash functions

6.0 Message
authentication & MACs

Recall: Integrity

Fundamental security property
¢ an asset is modified only by authorized parties

¢ “1” in the CIA triad

“computer security seeks to prevent unauthorized viewing (confidentiality)
or modification (integrity) of data while preserving access (availability)”

Alteration
= <4b>
- - Original connection Anmid
¢ main t-hreat against E- = > WRSY
integrity of e ==

New connection

in-transit data

¢ e.g., Attacker-In-The-Middle attack

e
)

6 Man inthe middle, Phisher,
Or annoNyrMous Proxy

Example 1

Secure electronic banking

+ abank receives an electronic request to transfer $1,000 from Alice to Bob
Concerns

¢ who ordered the transfer, Alice or an attacker (e.g., Bob)?

¢ is the amount the intended one or was maliciously modified while in transit?

& adversarial Vs. random message-transmission errors

¢ standard error-correction is not sufficient to address this concern

Example 2

Web browser cookies

¢ a user is performing an online purchase at Amazon

¢ a “cookie” contains session-related info, as client-server HTTP traffic is stateless
¢ stored at the client, included in messages sent to server
¢ contains client-specific info that affects the transaction
¢ e.g., the user’s shopping cart along with a discount due to a coupon

Concern

¢ was such state maliciously altered by the client (possibly harming the server)?

Recall: Message Authentication Codes & Properties

A MAC M, (Gen, Mac, Vrf) should satisfy the following
¢ efficiency: key generation & message transformations “are fast”
& correctness: for all m and k, it holds that Vrf,(m, Mac,(m)) = ACCEPT

& security: one “cannot forge” a fake verifiable pair m’, t’

/ | Ge“- \
Il(Mallory “@' N Il(

m, t m, t
Alice mMm—| Mac — - ‘ > Vrf

M: set of possible
messages

5

ACCEPT

MAC security

Attacker wins the game if 1. Vrf (m"t") = ACCEPT &
MAC scheme 2. m"notin 9

(Gen, Mac, Vrf)

Mac(k

Gen — k < Q = m]_, mz,

Maci(m;) — t; >

The MAC scheme is secure if any PPT “A wins the game only negligibly often.

10

S Sovasama i © \ a AR s

S o S o e e e 55
S S e S e s e = = =
=

2 = s =

=
=

2 T S

Y e ey ey
R S e S e
= S - s = e

%Mxm = = :
%_%é;%:‘g;@ ﬁfﬁéz‘;%%g& me;%‘%@zfﬂ;%z“@ = “‘%—%ﬁ%‘}gﬁh ﬁ;ﬁ%—é‘ﬁg&m%‘y —— e e w == “‘*‘:}“@%&z«ﬁ%ﬁ «‘-’3‘5%" e
- - - - - = - -

= e e
e o o S e e
e e e = R e S e e

3&.
=

Recall: MAC

Abstract cryptographic primitive, a.k.a. MAC, defined by

¢ a message space M; and
¢ atriplet of algorithms (Gen, Mac, Vrf)

M: set of possible
messages

A////////////// o
k
l Mallory “@'

: m, t
Alice m— Mac —_— - ..I

12

ACCEPT

Recall: MAC security

Attacker wins the game if 1. Vrf (m"t") = ACCEPT &
MAC scheme 2. m"notin 9
(Gen, Mac, Vrf)

mq
T < Mac(k,)
{ /*-\ ,1.,2(t]_ ﬁﬂ-
»\‘\' \\ ,' m)
\ 2
Gen —> k (Q = m]_, mz,
t,
Mac(m;) — t; t -
m ,t
=

The MAC scheme is secure if any PPT “A wins the game only negligibly often.

13

Real-life attacker

In practice, an attacker may
¢ observe a traffic of authenticated (and successfully verified) messages
¢ manipulate (or often also partially influences) traffic
+ aims at inserting an invalid but verifiable message m”, t* into the traffic
¢ interesting case: forged message is a new (unseen) one

¢ trivial case: forged message is a previously observed one, a.k.a. a replay attack

¢ launch a brute-force attack (given that Mac,(m) — tis publicly known)

¢ given any observed pair m, t, exhaustively search key space to find the used key k

14

Threat model

In the security game, Mallory is an adversary A who is
¢ “active” (on the wire)
¢ we allow A to observe and manipulate sent messages
¢ “well-informed”
¢ we allow A to request MAC tags of messages of its choice
¢ ‘“replay-attack safe”
& we restrict A to forge only new messages
» PPE
& we restrict A to be computationally bounded

¢ new messages may be forged undetectably only negligibly often

15

Notes on security definition

Is it a rather strong security definition?
¢ we allow A to query MAC tags for any message

¢ but real-world senders will authenticate only “meaningful” messages
¢ we allow A to break the scheme by forging any new message

¢ but real-world attackers will forge only “meaningful” messages

Yes, it is the right approach...

¢ message “meaningfulness” depends on higher-level application
¢ text messaging apps require authentication of English-text messages

¢ other apps may require authentication of binary files
+ security definition should better be agnostic of the specific higher application

16

Notes on security definition (Il)

Are replay attacks important in practice?
¢ absolutely yes: a very realistic & serious threat!
¢ e.g.,, what if a money transfer order is “replayed”?
Yet, a “replay-attack safe” security definition is preferable
¢ again, whether replayed messages are valid depends on higher-lever app
¢ Dbetter to delegate to this app the specification of such details
¢ e.g., semantics on traffic or validity checks on messages before they’re “consumed”
Eliminating replay attacks
¢ use of counters (i.e., common shared state) between sender & receiver

¢ use of timestamps along with a (relaxed) authentication window for validation

17

18

6.2 MAC constructions

Three generic MAC constructions

¢ fixed-length MAC
¢ direct application of a PRF for tagging
¢ limited applicability

¢ domain extension for MACs

¢ straightforward secure extension of fix-length MAC

¢ inefficient
¢ CBC-MAC

¢ resembles CBC-mode encryption

¢ efficient

19

. Fixed-length MAC

based on use of a PRF

¢ employ a PRF F, in the obvious way
to compute and canonically verify tags

¢ settagtto be the pseudorandom string
derived by evaluating F, on message m

secure, provided that F, is a secure PRF

20

€ <

I:k
v

y = Fi(x)

MAC scheme N
Gen(1"): {0,1} — k

Mac(m): set t = F (m)

Vrfy(m,t): return 1 iff t = Fi(m)

. Domain extension for MACs ()

suppose we have the previous fix-length MAC scheme

how can we authenticate a message m of arbitrary length?

naive approach m = $1 $2 Mgy

¢ pad m and view it as d blocks m;, m,, ..., my4 ‘1'

¢ separately apply MAC to block m; Fy Fi Fy
security issues t= ti=FR(my) t;=F(m,) tg = Fil(mg)

+ reordering attack; verify block index, t = F,.(m;]| |i)
¢ truncation attack; verify message length 6 = |[m|, t = F,(m;] |i] | §)

¢ mix-and-match attack; randomize tags (using message-specific fresh nonce)
21

2. Domain extension for MACs (lIl)

Final scheme
¢ assumes a secure MAC scheme for messages of size n
+ set tag of message m of size 6 at most 2"/ as follows

¢ choose fresh random nonce r of size n/4; view m as d blocks of size n/4 each

¢ separately apply MAC on each block, authenticating also its index, 6 and nonce r
SECUHTY r[121181 Imy r[[2]18]Im; r||d]|8]|mq
¢ extension is secure, if F, is a secure PRF ‘1’ ‘1' ‘1'
Fk Fk Fk

v v v

22 t= f, t]_, t2, td

3. CBC-MAC = -

2 m,
! }
Idea l l
¢ employ a PRF in a manner
similar to CBC-mode encryption Fi Fi Fi
Security —T— . , k]

¢ extension is secure, if
¢ F,is a secure PRF; and
¢ only fixed-length messages are authenticated

¢ messages of length equal to any multiple of n can be authenticated
¢ but this length need be fixed in advance

¢ insecure, otherwise

23

3. CBC-MAC Vs. previous schemes

¢ can authenticate longer messages
than basic PRF-based scheme (1)

m, m. m,
! |
BB

(| I l

t

¢ more efficient than
domain-extension MAC scheme (2)

Scheme (1)

Scheme (2)

Fi

|

t= Fk(m)

Y

(11]18][my r2]]6]]m;

v

24

Fy Fi
v v
ty, to,

rlld][8]]m;

v

F

3. CBC-MAC Vs. CBC-mode encryption

¢ crucially for their security

¢ CBC-MAC uses no IV (or uses an |V set to 0) and only the last PRF output
¢ CBC-mode encryption uses a random IV and all PRF outputs

¢ “simple”, innocent modification can be catastrophic...

m,

CBC-MAC
m,

|

—

!

m3
}

—

i

j i

25

CBC-mode encryption

m, m.
m—

v | |

v C, C» C,

26

6.3 Authenticated
encryption

Recall: Two distinct properties

Secrecy

¢ sensitive information has value
o if leaked, it can be risky

+ specific scope / general semantics
+ prevention

¢ does not imply integrity
¢ e.g., bit-flipping “attack”

Integrity

¢ correct information has value
+ if manipulated, it can harmful
o random Vs. adversarial manipulation

+ wider scope / context-specific semantics

source Vs. content authentication
¢ replay attacks
+ detection
+ does not imply secrecy
¢ e.g., user knows cookies’ “contents”

27

Recall: Yet, they are quite close...

Common setting

¢ communication (storage) over an “open,” i.e., unprotected, channel (medium)

Fundamental security problems

+ while in transit (at rest) @ ‘wﬂl
¢ no message (file) should be leaked to A =

¢ no message (file) should be modified by A ——

Core cryptographic protections
+ encryption schemes provide secrecy / confidentiality
¢ MAC schemes provide integrity / unforgeability

Can we achieve both at once in the symmetric-key setting? Yes!

28

Authenticated Encryption (AE): Catch 2 birds w/ 1 stone

Cryptographic primitive that realizes an “ideally secure” communication channel
¢ motivation

¢ important in practice as real apps often need both

¢ good security hygiene

+ even if a given app “asks” only/more for secrecy or integrity than the other,
it’s always better to achieve both!

29

Three generic AE constructions

Constructions of a secure authenticated encryption scheme N,
¢ they all make use of

¢ a CPA-secure encryption scheme Mg = (Enc, Dec); and
¢ asecure MAC Ny, = (Mac, Vrf)

¢ which are instantiated using independent secret keys ke, km

¢ ..butthe order with which these are used matters!

30

Generic AE constructions (1)

1. encrypt-and-authenticate
¢ Enc.(m) — c; Mac,(m) — t; send ciphertext (c, t)
¢ if Deci(c) =m# fail and Vrf,,,(m,t) accepts, output m; else output fail
¢ insecure scheme, generally
¢ e.g., MAC tag t may leak information about m
¢ e.g., if MAC is deterministic (e.g., CBC-MAC) then Mg is not even CPA-secure
¢ usedin SSH

31

Generic AE constructions (2)

2. authenticate-then-encrypt
¢ Macy,(m) —t; Enc(m]|t) — c; send ciphertext ¢
o if Dec(c)=m||t# f£ail and Vrf,(m,t) accepts, output m; else output fail

¢ insecure scheme, generally

¢ usedinTLS, IPsec

32

Generic AE constructions (3)

3. encrypt-then-authenticate (cf. “authenticated encryption”)
¢ Enc.(m) — c; Mac,(c) — t; send ciphertext (c, t)
o if Vrf(c,t) accepts then output Dec.(c) = m, else output fail

¢ secure scheme, generally (as long as Iy, is a “strong” MAC)

¢ usedin TLS, SSHv2, IPsec

33

Application: Secure communication sessions

An AE scheme I,; = (Enc, Dec) enables two parties to communicate securely

*

L 4

*

*

session: period of time during which sender and receiver maintain state
idea: send any message m as ¢ = Enc,(m) & ignore received c that don’t verify

security: secrecy & integrity are protected

remaining possible attacks
¢ re-ordering attack counters can be used to eliminate reordering/replays
¢ reflection attack directional bit can be used to eliminate reflections

¢ replay attack c = Enci(ba_slctragl |m); ctrpp++

34

35

6.4 Cryptographic
Hash functions

Cryptographic hash functions

Basic cryptographic primitive input output
arbitrarily H short digest,
¢ maps objects to a fixed-length binary strings long string fingerprint,
“secure”
& core security property: mapping avoids collisions —

+ collision: distinct objects (x # y) are mapped to the same hash value (H(x) = H(y))

+ although collisions necessarily exist, they are infeasible to find

Important role in modern cryptography
¢ lie between symmetric- and asymmetric-key cryptography

¢ capture different security properties of “idealized random functions”

¢ qualitative stronger assumption than PRF

75

Hash & compression functions

Map messages to short digests

¢ ageneral hash function H() maps

¢ a message of an arbitrary length to a n-bit string

¢ acompression (hash) function h() maps
¢ along binary string to a shorter binary string

+ an [(n)-bit string to a n-bit string, with /(n) > n

37

input
arbitrarily
long string

input
[(n)-bit
string

output
n-bit
string

output
n-bit
string

Collision resistance (CR)

{s/x Hash
Vezs7)) function H

Attacker wins the game if x # x” & H(x) = H(x’)

"

description of H

A

H is collision-resistant if any PPT ‘A wins the game only negligibly often.

38

Weaker security notions

Given a hash function H: X — Y, then we say that H is
& preimage resistant (or one-way)

¢ if giveny €Y, finding a value x € X s.t. H(x) = y happens negligibly often
+ 2-nd preimage resistant (or weak collision resistant)

¢ if given a uniform x € X, finding a value x’ € X, s.t. x’# x and H(x’) = H(x)
happens negligibly often

¢ collision resistant (or strong collision resistant)

¢ if finding two distinct values X, x € X, s.t. H(x’) = H(x) happens negligibly often

39

40

6.5 Design framework

Domain extension via the Merkle-Damgard transform

General design pattern for cryptographic hash functions

¢ reduces CR of general hash functions to CR of compression functions

input output input output
arbitrarily H n-bit < l(n)-bit h n-bit
long string string string string

¢ thus, in practice, it suffices to realize a collision-resistant compression function h

¢ compressing by 1 single bit is a least as hard as compressing by any number of bits!

41

Merkle-Damgard transform: Design

Suppose that h: {0,1}*"— {0,1}" is a collision-resistant compression function

Consider the general hash function H: M= {x : |x|<2"} — {0,1}", defined as

o 5 3 .
Merkle-Damgard design Xy X2 e X Xsu=L
¢ H(x) is computed by applying L L L % L
h() in a “chained” manner o L | , i | g
over n-bit message blocks h [— h® B h —»l h' »QFH X)

+ pad x to define a number, say B, message blocks xj, ..., Xg, with |x;| =n

+ set extra, final, message block xg.; as an n-bit encoding L of | x|
o starting by initial digest z; = IV = 0", output H(x) = zg,4, Where z; = h3(z; 4 | | x;)

42

Merkle-Damgard transform: Security

If the compression function h is CR,
then the derived hash function H is also CR!

hS

hS

43

H*x)

Compression function design: The Davies-Meyer scheme

Employs PRF w/ key length m & block length n
¢ define h: {0,1}"*™ — {0,1}" as h(x] | k) = F,(x) XOR x

Security k 1 hik,),

¢ hisCR, if Fis anideal cipher

44

Well known hash functions

¢ MDS5 (designed in 1991)
¢ output 128 bits, collision resistance completely broken by researchers in 2004
¢ today (controlled) collisions can be found in less than a minute on a desktop PC
¢ SHAI1 —the Secure Hash Algorithm (series of algorithms standardized by NIST)
¢ output 160 bits, considered insecure for collision resistance
¢ broken in 2017 by researchers at CWI

¢ SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)

¢ outputs 224, 256, 384, and 512 bits, respectively, no real security concerns yet
¢ based on Merkle-Damgard + Davies-Meyer generic transforms

¢ SHAS3 (Kessac)
¢ completely new philosophy (sponge construction + unkeyed permutations)

45

SHA-2-512 overview

- Nx1024 bits

- L bits - -

Message | 1000000 ...0] £

e s e e e ..
P
P
P
SR E s s ...

te—— 1024 bits —»+«—— 1024 bits —»+ te«—— 1024 bits —»

- > - > - hash code
512 bits 512 bits 512 bits

-4 = word-by-word addition mod 2%¢

46

Current hash standards

Algorithm Maximum Block Size Rounds Message
Message Size (bits) Digest Size
(bits) (bits)
MD5 2°4 512 64 128
SHA-1 2% 512 80 160
SHA-2-224 2°4 512 64 224
SHA-2-256 2% 512 64 256
SHA-2-384 2128 1024 80 384
SHA-2-512 2128 1024 80 512
SHA-3-256 unlimited 1088 24 256
SHA-3-512 unlimited 576 24 512

47

ST

S o S o e e e SSes:
S S e S e s e = = =
=

= = e

S

%w& 2 R ;. T 2 S =
W’%ﬁ-@ﬁ%_ S = = e S R
e e e e e e e e e s - e

= s
= e S Seesme o ee e

3&.
=

Generic attacks against cryptographic hashing

Assume a CR function h : {0,1}" — {0,1}"

¢ brute-force attack

¢ for x =0 to 2"-1 (sequentially, for each string x in the domain):

¢ compute & record hash value h(x)

¢ if h(x) equals a previously recorded hash h(y) halt & output collision on x # y
¢ birthday attack

¢ surprisingly, a more efficient generic attack exists!

49

Birthday paradox

“In any group of 23 people (or more), it is more likely (than not) that
at least two individuals have their birthday on the same day”

¢ based on probabilistic analysis of a random “balls-into-bins” experiment:

“k balls are each, independently and randomly, thrown into one out of m bins”

¢ captures likelihood that event E = “two balls land into the same bin” occurs

o analysis shows: Pr[E] = 1 - eklkl}/2m (1) = oé
=0,

o if Pr[E] =1/2, Eq. (1) gives k = 1.17 m* %8;?

© 0.6

o thus, for m = 365, k is around 23 (!) 205

| m1=3!65 §

¢ assuming a uniform birth distribution ©O03 |

k,,

B 5 23

0010 20 30 40 50 60 70 80 90 100
= Number of people

Birthday attack

Applies “birthday paradox” against cryptographic hashing

¢ exploits the likelihood of finding collisions for hash function h
using a randomized search, rather than an exhausting search

¢ analogy

¢ k balls: distinct messages chosen to hash @ @ @

¢ m bins: number of possible hash values

¢ independent & random throwing

¢ random message selection + hash mapping l I l I l I I | l I

binl bin2 bin m

51

Probabilistic analysis

Experiment

¢ k balls are each, independently and randomly, thrown into one out of m bins

Analysis

¢ the probability that the i-th ball lands in an empty bin is: 1-(i-1)/m

¢ the probability F, that after k throws, no balls land in the same bin is:
F,=(1-1/m)(1-2/m)(1-3/m)...(1-(k-1)/m)

o by the standard approximation 1 - x = e*: F, = e{l/m+2/m+3/m+ ..+ (k-1)/m) = g-k(k-1)/2m

¢ thus, two balls land in same bin with probability Pr[E] = 1 - F, = 1 - ek(k-1)/2m

¢ lower bound — Pr[E] increases if the bin-selection distribution is not uniform

52

What birthday attacks mean in practice...

¢ # hash evaluations for finding collisions on n-bit digests with probability p

Bits
n
16
32
64

128

256

384

512

Possible outputs
(2 s.f.) (H)
m

65,536
4.3 x10°
1.8 x101°
3.4 x 1038
1.2 x 1077
3.9x 10115
1.3 x 10154

10-18

<

<

6
2.6 x 1010
4.8 x 10%°
8.9 x 1048
1.6 x 1068

Desired probability of random collision

(2s.1.) (p)

10715 1012 10~-° 106 0.1% 1% 25% 50%
<2 <2 <2 <2 1 36 190 300
<2 <2 3 93 2900 9300 50,000 77,000
190 6100 190,000 | 6,100,000 1.9x108 6.1 x108 3.3 x10% 5.1 x10°

8.2x 10" 26x10'8 82x10' 2.6 x10'® 83 x 10" 2.6x10'8 1.4x10'9 2.2x10"°
1.5x10%" 4.8x10% 15x10% 4.8x10%% 1.5x10%7 4.8x10%7 26x10%8 4.0x10%8
2.8 x10%0 8.9 x 105" 2.8x10%% 8.9 x10%* 2.8 x10% 8.9 x 105 4.8x105 7.4 x 105
52x10% 1.6x107" 52x1072 1.6x107% 52x1075 1.6x 1076 8.8 x 107 1.4 x 1077

¢ form = 2" average # hash evaluations before finding the first collision is

1.25(m)%2= 1.25 x 2"/2

53

75%
430
110,000
7.2x10°
3.1x10"
5.7 x 1038
1.0 x 1058
1.9 x 1077

Overall

Assume a CR function h producing hash values of size n
+ brute-force attack

¢ evaluate h on 2" + 1 distinct inputs, enumerated by counting

¢ by the “pigeon hole” principle, at least 1 collision will be found
¢ birthday attack

+ evaluate h on (much) fewer distinct randomly selected inputs

¢ by “balls-into-bins” probabilistic analysis, at least 1 collision will more likely be found
¢ when hashing only 2"/2 distinct random inputs, it’s more likely to find a collision!
o

thus, achieve N-bit security, we need hash values of length (at least) 2N

54

55

6.7 Applications to
cryptography

Hash functions enable efficient MAC design!

Back to problem of designing secure MAC for messages of arbitrary lengths

¢ so far, we have seen two solutions

¢ block-based “tagging”

*

¢ based on PRFs

¢ inefficient

CBC-MAC

¢ also based on PRFs

¢ more efficient

56

rl11116][my r|[2]18]]m,

v

v

F F
:
| T | Trf .
|
F o)

rl1d]|8]m,

[1] Hash-and-MAC: Design

Generic method for designing secure MAC for messages of arbitrary lengths

¢ based on CR hashing and any fix-length secure MAC
m

\

m —s H H(m) Mac

\
t

¢ new MAC (Gen’, Mac’, Vrf’) as the name suggests

¢ Gen’: instantiate H and Mac, with key k

¢ Mac’: hash message m into h = H(m), output Mac,-tag ton h

¢ Vrf’: canonical verification
57

syl

Mac’

h = H(m)
Mac

—~ €

[1] Hash-and-MAC: Security

The Hash-and-MAC construction is a secure as long as
¢ His collision resistant; and

¢ the underlying MAC is secure

Intuition

¢ since His CR:

syl

authenticating digest H(m) is a good as authenticating m itself!

Mac’

h = H(m)
Mac

58

—~ €

[2] Hash-based MAC

+ so far, MACs are based on block ciphers

¢ can we construct a MAC based on CR hashing?

59

[2] A naive, insecure, approach

Set tagt as:
Mac,(m) = H(k| [m)

¢ intuition: given H(k| | m) it should be infeasible to compute H(k| |[m’), m’ # m

Insecure construction . X

xli
¢ practical CR hash functions L L L L

employ the Merkle-Damgard design

Zgiie h$ —Hx)

¢ length-extension attack
¢ knowledge of H(m;) makes it feasible to compute H(m;| [m,)

¢ by knowing the length of m;, one can learn internal state zz even without knowing m,!

60

[2] HMAC: Secure design

Set tagt as:

HMAC,[m] = H[(k®opad) || H[(k®ipad) || m

¢ intuition: instantiation of hash & sign paradigm

¢ two layers of hashing H
¢ upper layer
¢ y=H((k®@ipad) || m)
¢ y=H’'(m), i.e., “hash”
¢ lower layer
e t=H((k®opad) ||Yy)

e t=Mac' (ko V), i.€., “sign”

k |pad rm,
U\
IV—- hS
k opad
\\
v—- kI

61

I

e

kout

appcnd
padding

™\

hS

[2] HMAC: Security

If used with a secure hash function and according to specs, HMAC is secure

¢ no practical attacks are known against HMAC

62

63

6.8 Applications to
security

Generally: Message digests

Short secure description of data primarily used to detect changes

Hash
function

Message
digest

64

Application 1: Digital envelops

Commitment schemes
¢ two operations
¢ commit(x, r)=C
¢ i.e., put message x into an envelop (using randomness r)
o commit(x, r)=h(x|] r)
¢ hiding property: you cannot see through an (opaque) envelop
¢ open(C, m, r) = ACCEPT or REJECT
¢ i.e., open envelop (using r) to check that it has not been tampered with
¢ open(C, m, r): checkifh(m || r)=?C

¢ binding property: you cannot change the contents of a sealed envelop

65

Application 1: Security properties

Hiding: perfect opaqueness

¢ similar to indistinguishability; commitment reveals nothing about message
¢ adversary selects two messages x4, X, which he gives to challenger
¢ challenger randomly selects bit b, computes (randomness and) commitment C; of x;
o challenger gives C, to adversary, who wins if he can find bit b (better than guessing)

Binding: perfect sealing
¢ similar to unforgeability; cannot find a commitment “collision”

¢ adversary selects two distinct messages x4, X, and two corresponding values ry, 15

& adversary wins if commit(x;, r;) = commit(x,, r5)

66

Example 1: Fair digital coin flipping

Problem
¢ To decide who will do the dishes: Alice is to call the coin flip & Bob is to flip the coin
¢ But Alice may change her mind, Bob may skew the result
Protocol
¢ 1. Alice calls the coin flip but only tells Bob a commitment to her call

¢ 2.Bob flips the coin & reports the result

¢ 3. Alice reveals what she committed to & Bob verifies that Alice's call matches her commitment

o If Alice’s revealed commitment matches Bob’s reported result, Alice wins; else Bob wins

67

Example 1: Fair digital coin flipping (cont.)

Protocol
¢ 1. Alice calls the coin flip but only tells Bob a commitment to her call

¢ 2.Bobflips the coin & reports the result

¢ 3. Alice reveals what she committed to & Bob verifies that Alice's call matches her commitment

¢ If Alice’s revealed commitment matches Bob’s reported result, Alice wins; else Bob wins

Security

¢ Hiding: Bob does not get any advantage by seeing Alice’s commitment

¢ Binding: Alice cannot change her mind after the coin is flipped

68

Application 2: Forward-secure key rotation

Alice and Bob secretly communicate using symmetric encryption
¢ Eve intercepts their messages and later breaks into Bob’s machine to steal the shared key

Alice Bob

key k

S g

S1=K h S h S h Sy h |Ske
X key

< leakage

69

Application 3: Hash values as file identifiers

Consider a cryptographic hash function H applied on a file F

¢ the hash (or digest) H(M) of F serves as a unique identifier for F
¢ “uniqueness”
¢ if another file F’ has the same identifier, this contradicts the security of H
¢ thus

o the hash H(F) of Fis like a fingerprint

one can check whether two files are equal by comparing their digests

Many real-life applications employ this simple idea!

70

Examples

3.1 Virus fingerprinting 3.2 Peer-to-peer file sharing

¢ When you perform a virus scan over your ¢ Indistributed file-sharing applications (e.g., systems
computer, the virus scanner application tries allowing users to contribute contents that are shared
to identify and block or quarantine programs amongst each other), both shared files and
or files that contain viruses participating peer nodes (e.g., their IP addresses) are

¢ This search is primarily based on comparing uniquely mapped into identifiers in a hash range

the digest of your files against a database of 4 \When 3 given file is added in the system it is

the digests of already known viruses consistently stored at peer nodes that are

¢ The same technique is used for confirming responsible to store files those digests fall in a
that is safe to download an application or certain sub-range

open an email attachment _ _ _
¢ When a user looks up a file, routing tables (storing

values in the hash range) are used to eventually
locate one of the machines storing the searched file

71

Example 3.3: Data deduplication

Goal: Elimination of duplicate data
¢ Consider a cloud provider, e.g., Gmail or
Dropbox, storing data from numerous users.

A vast majority of stored data are duplicates;
e.g., think of how many users store the same
email attachments, or a popular video...

¢ Huge cost savings result from deduplication:

+ a provider stores identical contents
possessed by different users once!

¢ this is completely transparent to end users!

Idea: Check redundancy via hashing

72

¢ Files can be reliably checked whether they are

duplicates by comparing their digests.

When a user is ready to upload a new file to the
cloud, the file’s digest is first uploaded.

The provider checks to find a possible duplicate,
in which case a pointer to this file is added.

Otherwise, the file is being uploaded literally

This approach saves both storage and bandwidth!

Application 4: Concealing stored passwords

Goal: User authentication Problem: How to protect password files
+ Today, passwords are the dominant means for e If password are stored at the server in the clear,
user authentication, i.e., the process of an attacker can steal the password file after
verifying the identity of a user (requesting breaking into the authentication server — this type
access to some computing resource). of attack happens routinely nowadays...

o This is a “something you know” type of user ¢ Password hashing involved having the server
authentication, assuming that only the storing the hashes of the users passwords.

legitimate user knows the correct password. , Thys evenifa password file leaks to an attacker,

¢ When you provide your password to a the onewayness of the used hash function can
computer system (e.g., to a server through a guarantee some protections against user-
web interface), the system checks if your impersonation simply by providing the stolen
submitted password matches the password password for a victim user.

that was initially stored in the system at setup.
73

Example 4: Password storage

Identity Password Identity Password

Jane qwerty Jane Ox471laa2d2
Pat aaaaaa Pat Ox13b9c32f
Phillip oct31witch Phillip Ox01cl42be
Roz aaaaaa Roz Ox13b9c32f
Herman guessme Herman 0x5202aae?2
Claire ag3wmsSoto!'4 Claire 0x488b8c27

Plaintext

Concealed via hashing

Application 5: Hash-and-digitally-sign

Very often digital signatures are used with hash functions
¢ the hash of a message is signed, instead of the message itself
Signing message M
¢ let h be a cryptographic hash function, assume RSA setting (n, d, e)
¢ compute signature o = h(M)4 mod n
¢ sendo, M
Verifying signature o
+ use public key (e,n)
¢ compute H=0¢mod n
¢ if H=h(M) output ACCEPT, else output REJECT

75

Application 6: The Merkle tree

¢ an alternative (to Merkle-Damgard) method to achieve domain extension

d=h(h14||h48)

h(h12||h34)= his
h(h1||h2)= h;,

h58=h(h56||h78)

h1 hz s h7 h8

76

Motivation: Secure cloud storage

¢ Bob hasfilesf,, f,,...f,

¢ Bob sends to Amazon S3 (cloud storage service)
¢ the hashes h(r| |f;), h(r| |f,),..., h(r] |f,)
¢ filesfy, fy,... .1,

¢ Bob stores randomness r (and keeps it secret)

o Every time Bob reads a file f;, he also reads h(r| |f;) and verifies f, integrity

¢ Any problems with writes?

75

Cloud storage model

upload files

T s o P

L) - files = (F1, F2, ..., F7, F8)

@ =15

Cloud storage model
give me - attack by malicious server

file F1 (3)

files=(F1, F2, ..., F7, F8)

<t dJd
€ -2

@ =7 %

here it is, F1’

F1I’ = #@S@!# @S~... (altered)

Secure cloud storage model
- integrity protection via hashing
2. upload files ~

server / user (5)

e — files=F = (F1, F2, ..., F7, F8)

1. pre-process files
using CR hash function h

©
(Fies

digest d is computed over all files
|d| << |F|

Secure cloud storage model

1. give me - how verification works
file F1

/ "

files | - files = (F1, F2, ..., F7, F8)

2. hereitis, F1’ - (o) 4. verification
server user
“is F1" intact?”

3. "proof"
(or helper information)

Secure cloud storage model
- verification via hashing

(9)

verification

>
“proof” u “is F1’ intact?”
(or helper information)

here it is, F1’

server
files

¢ user has

¢ authentic digest d (locally stored)

+ file F1’ (to be checked/verified as it can be altered)

¢ proof (to help checking integrity, but it can be maliciously chosen)
¢ verification involves (performed locally at user)

¢ combine the file F1’ with the proof to re-compute candidate digest d’
¢ checkifd =d

¢ ifyes, then F1 is intact; otherwise tampering is detected!

Overall: Data authentication via the Merkle tree

z: 1. give me file F1
*

Dropbox 2. here itis, F1

m 4 verification

3. ”proof"
= (F4, F,, ..., Fs) (or helper information)

d=h(hy || hsg)
hsg = h (hsg || hsg)

h(h12||h34)=h14
h(hy || hy)= hy

h, h; h; hg let hy=h(F;),1<i<n

83

